[5]

1.	(a)	(i)	Ability to distinguish points (close together);	1
		(ii)	Electrons have a shorter wavelength;	1
	(b)	(i)	Golgi / nucleus / mitochondrion / endoplasmic reticulum / chromosome / larger ribosomes; R Membrane – bound structure	1
		(ii)	Capsule / cell wall / flagellum / mesosome / plasmid / nucleoid / circular DNA;	1
	(c)	Form secre form	nation / packaging of glycoproteins / glycolipids / etion / modification of proteins/ nation of lysosomes / membranes / vesicles;	1

2.

(a)

Feature	Epithelial cell from small intestine	Prokaryotic cell
Golgi apparatus	\checkmark	
Mitochondrion	\checkmark	
Nuclear envelope	\checkmark	
Plasmid		~
Ribosome	\checkmark	\checkmark

Mark down, one mark for each correct column;

- (b) (i) Electron microscope with better resolution/ able to distinguish between points closer together;
 (Beam of electrons) with shorter wavelength;
 (Ignore refs. to higher magnification/ more detail)
 (A reverse argument for light microscope)
 - (ii) Processes <u>involved in preparation</u> alter/distort cell contents/ introduction of artefacts;

[5]

2

2

1

PMT

3.	(a)	Answer within limits of 6.3 - 6.7;; (if outside these limits, answer involving division of actual length by 6000 1 mark)	2	
	(b)	Nitrogen), Carbon), Hydrogen) and Oxygen);	1	
	(c)	 (i) In bacterial cell, DNA / genetic material / naked / not associated with protein / not in chromosomes/ DNA in loop / plasmid / DNA not in nucleus; 	1	
		 (ii) In bacterial cell organelles / named examples / not surrounded by membranes / bacteria only have a plasma membrane / no endoplasmic reticulum / have mesosomes; 	1	[5]
4.	(a)	Nuclear pore	1	
	(u) (b)	Making/synthesising proteins/translation:	1	
	(c)	Z nackages/modifies/stores / transports proteins:	1	
	(d)	Allow 2 marks for correct answer $1.3 - 1.4 \mu\text{m}$ Allow 1 mark for incorrect answer if measured length by 30 000	2	[5]
5.	(a)	 Microvillus/microvilli/brush border; R Villus/villi 	1	
		 (ii) Photograph (b) is taken with an electron microscope; greater resolution (and therefore more detail seen); requires thin specimen so section must be cut through cell; electron microscope uses shorter λ; (allow converse points) 	max. 2	
	(b)	Presence of microvilli; increase SA for absorption / diffusion active transport; presence of mitochondria; produce ATP for active transport / transport against concentration gradient:	Δ	
		gradient,	-1	

(c) (i) Answer obtained by dividing actual length by magnification; and correctly expressed in micrometres; 2 (ii) Method involving Lengths of cell in two photographs compared; and related to magnification of photograph b; (eg ratio \times 10 000) 2 [11] 6. Cooling / inhibitors; 2 (a) (i) stops / slows reactions; Isotonic / same Ψ / same Ψ as (as mitochondria); 2 (ii) ref to osmosis / no (net) water movement / prevent bursting prevent shrinkage; (b) Mitochondria and bacteria approximately same size / same density / mass / 1 weight; [5] 7. Presence of nucleus / nuclear envelope / membrane bounded organelles/ (a) specified organelles, 1 Converted to proteins; (b) (i) Involvement of ribosomes (on rough endoplasmic reticulum); 2 (ii) Arrow from plasma membrane to rough endoplasmic reticulum; to Golgi apparatus; to vesicles and out of cell: 3 (iii) 1 Exocytosis; [7] Remove / separate debris / cell walls / intact cells; 1 8. (a) (Ignore references to impurities and foreign bodies) (i) Nucleus: 1 (b) (ii) Ribosomes / endoplasmic reticulum; 1 (c) High(er) / less negative; So water moves in (to mitochondria), 2

PMT

[5]

PMT

[6]

[15]

9.	(a)	(i)	Transmission electron microscope/TEM;	1
		(ii)	Shows detail of/enablesto be seen; (Answer needs to refer to evidence from diagram.)	1
	(b)	(Mit Rele To n activ	tochondria) are site of respiration; ease energy / produce ATP; nove substances against concentration gradient / we transport requires energy / ATP;	
		Do r refei	not allow credit for mitochondria making energy or rences to diffusion	max 2
	(c)	Corr	rect answer of $40\ 000 = 1$ mark	
		Corr	rect method = 1 mark	2

10. Quality of written communication should be considered in crediting points in the marking scheme. In order to gain credit, answers must be expressed logically in clear, scientific terms.

(a)	(i)	Made up of two sugar units / monosaccharides; R Two glucose un	nits 1
	(ii)	Correct bond circled;	1
	(iii)	C ₁₂ ; H ₂₂ O ₁₁ ;	2
(b)	A.T. Mole (Only	involves carriers / proteins; cules will have a different shape; y those absorbed) will fit;	2
(c)	Lacto So wa By os <i>Note</i> :	ose produces a lower / more negative water potential; ater moves into the intestine / less water absorbed; smosis / diffusion / down concentration gradient; <i>concentration gradient must be defined</i> .	3
(d)	1	Prokaryotic cells do not have a nucleus / have genetic material in cytoplasm;	
	2	DNA in loop / ring;	
	3	Not associated with proteins / do not have chromosomes / chromatin / do not divide by mitosis;	
	4	Smaller ribosomes;	
	5	No <u>membrane-bound</u> organelles;	
	6	Such as mitochondria / lysosomes / endoplasmic reticulum / Golgi / chloroplasts;	
	7	Prokaryotic cells may have mesosomes;	
	8	Prokaryotic cells smaller;	
	9	May be enclosed by capsule;	max 6

11. (a) A Carries the (genetic) code / genetic instructions / DNA /

PMT

			makes mRNA / transcription / makes ribosomes;		
		В	Links amino acids / synthesises / makes protein;		
		С	Involved in modifying / packaging protein / forms glycoproteins / forms vesicles;	3	
	(b)	(i)	Mitochondrion; 0.01% as opposed to 0.003%; Accept any valid approach but must be clear as to what the calculations relate	2	
		(ii)	With electron microscopes sections must be cut; Cisternae are joined to each other; Outside plane of section;	2 max	
		(iii)	Protein synthesis requires energy / ATP; Mitochondria release energy / make ATP; From respiration; Do not award credit for second point if candidate refers to mitochondria making / producing energy	3	[10]
12.	(a)	(i)	The receptor / glucagon will have a particular shape / tertiary structure The other will fit / bind because of its shape;	e; 2	
		(ii)	Cells in other parts of the body do not have these receptors / Liver cells have these receptors;	1	
	(b)	Side	chains / R-groups are different;	1	
	(c)	Terti Will Starc	ary structure changes / enzyme denatured / bonds broken; affect active site (of enzyme); h cannot bind / fit / form enzyme-substrate complex;	3	
	(d)	Keep So pi	os pH constant; roteins / enzymes in mitochondria not denatured / affected;	2	

	(e)	1 So 2 So 3 Inv 4 Inv 5 Pro 6 Ca 7 Pro 8 Pro cha	me proteins pass right through membrane; me proteins associated with one layer; volved in facilitated diffusion; volved in active transport; oteins act as carriers; rrier changes shape / position; oteins form channels / pores; otein allows passage of water soluble molecules / arged particles / correct named example;	6 max	[15]
13.	(a)	(i)	Short wavelength; [Allow: Small wavelength] Good/ high resolution; [Allow: description of resolution]	2	
		(ii)	Cut through a different plane;	1	
	(b)	(i)	Mitochondria supply energy/ ATP; For active transport of mineral ions/ Absorption of ions against concentration gradient; Movement/ contraction of muscles; [Reject: thermodynamically incorrect answers about ,making" or ,producing "energy]	3	
					[6]
14.	(a)	(i) (ii)	Other (membrane bound) organelles/nucleus not included; Folded inner membrane/Inner membrane forms cristae;	1 1	
	(b)	(i)	650;	1	
		(ii)	Microvilli;	1	
	(c)	(i)	More mitochondrial membrane; Mitochondria produce ATP/release/transfer energy; From respiration; To move substances against concentration gradient; [Note: Do not credit "make" or "produce" energy for second point]	max 2	
		(ii)	Large amount of rough endoplasmic reticulum; On which ribosomes are found; Enzymes are proteins; Protein synthesis/translation on ribosomes/rough er;	max 3	

	(d)	1 Ph 2 (To 3 An 4 By 5 An 6 He hy 7 He	osholipid consists of glycerol; o which are joined) two fatty acids; id phosphate; r condensation/elimination of water molecules; ranged as bilayer in membrane; ad/phosphate hydrophilic/polar and tail/fatty acid ydrophobic/non-polar; ads outside and tails attracted to each other/inside;	max 6	
					[15]
15.	(a)	(i)	Golgi;	1	
		(ii)	Exocytosis;	1	
	(b)	(i)	Joining together of amino acids / synthesis/production of thyroglobu makes protein;	ılin / 1	
			Do not credit synthesis of amino acids		
		(ii)	Electron microscope has high/greater resolution; Because it uses electrons; Which have smaller wave(length);	max 2	[5]
16.	(a)	Does toget As li <i>The l</i>	s not have the resolution / cannot distinguish between points this close ther; ght has longer wavelength; key ideas in marking this part of the question are resolution wavelength.	2	
	(b)	Lipic	d soluble / small / non-polar / not charged;	1	
	(c)	(i)	Concentration <u>of sodium ions</u> (outside cell); As concentration/independent variable increases so does the rate of diffusion;	2	
		(ii)	Sodium ions are passing through the channels/pores; At their maximum rate; Rate is limited by the number of sodium channels / another limiting factor;	max 2	[7]

17.	(a)	(i)	Active transport; Low to high concentration / against concentration gradient; <i>Reject answers relating only to high concentration in cell</i>	2	
		(ii)	Rate of movement / diffusion proportional to concentration gradient/ difference in concentration; High concentration of potassium ions inside cell compared to outside; <i>Must mention high concentration. Ignore reference to other factors if</i> <i>reasoning is appropriate.</i>	2	
	(b)	(i)	$\mathbf{O} \\ \ \\ \mathbf{C} - \mathbf{N} $		
			H;	1	
		(ii)	10;	1	
	(c)	Actio Fluic Pore	on of vanilomycin depends on fluidity of membrane; hty reduced / not fluid at low temperatures; formed by gramicidin A remains in place / permanent;	3	
	(d)	Pore Hydi	between sterol molecules lined with polyene antibiotic; rophobic region next to sterol;	2	[11]
18.	(a)	remo whic	oves debris/intact cells/sand; h would contaminate sediment A/interfere with the results;	2	
	(b)	(i)	nuclei;	1	
	. /	(ii)	ribosomes/endoplasmic reticulum/membrane/Golgi;	1	
	(c)	dens	ity/size/mass/weight;	1	
	(d)	an el elect	ectron microscope has a higher resolution; rons with shorter wavelength;	2	[7]

(a)(i)break open cells / release cell contents;1(ii)keep pH the same / controls pH;
prevent change to / denaturing of proteins/enzymes;2

(b) (i)

19.

(supernatant) C (pellet) B; (pellet)	A;
--------------------------------------	----

 (ii) site of respiration; releases energy/ATP; required for movement against concentration gradient; 2 max ignore first point for thermodynamically incorrect statements such as "making energy".

[7]

2

PMT